首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38386篇
  免费   4501篇
  国内免费   2308篇
电工技术   2062篇
综合类   3982篇
化学工业   7578篇
金属工艺   1889篇
机械仪表   2475篇
建筑科学   4387篇
矿业工程   1319篇
能源动力   2046篇
轻工业   2421篇
水利工程   1686篇
石油天然气   1674篇
武器工业   375篇
无线电   3512篇
一般工业技术   5184篇
冶金工业   1616篇
原子能技术   858篇
自动化技术   2131篇
  2024年   70篇
  2023年   645篇
  2022年   1019篇
  2021年   1189篇
  2020年   1335篇
  2019年   1114篇
  2018年   1116篇
  2017年   1457篇
  2016年   1447篇
  2015年   1593篇
  2014年   2165篇
  2013年   2551篇
  2012年   2833篇
  2011年   2921篇
  2010年   2164篇
  2009年   2290篇
  2008年   2078篇
  2007年   2559篇
  2006年   2280篇
  2005年   1829篇
  2004年   1584篇
  2003年   1380篇
  2002年   1203篇
  2001年   1001篇
  2000年   847篇
  1999年   702篇
  1998年   575篇
  1997年   523篇
  1996年   453篇
  1995年   403篇
  1994年   365篇
  1993年   264篇
  1992年   239篇
  1991年   217篇
  1990年   180篇
  1989年   141篇
  1988年   105篇
  1987年   81篇
  1986年   65篇
  1985年   49篇
  1984年   31篇
  1983年   21篇
  1982年   29篇
  1981年   21篇
  1980年   16篇
  1979年   7篇
  1976年   4篇
  1975年   5篇
  1974年   4篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
《Ceramics International》2022,48(20):30052-30065
The present work is attempted to improve the microhardness and wear properties of AISI 1020 steel by depositing TiB2–Fe composite coating using tungsten inert gas (TIG) cladding. In this study, different compositions of TiB2–Fe paste form were preplaced on the substrate plates and then TIG heat input was applied to deposit hard composite coating layer. The main objective of the present work was to explore the influence of TIG input current as well as iron content on the microstructure and surface properties of deposited coatings. Microhardness, microstructural and phase characterization of the coating have been done by the Vickers microhardness tester, scanning electron microscope (SEM), Energy dispersive spectroscopy (EDS) and X-ray diffractrometer (XRD). The results showed that the microhardness of the TiB2–Fe coating was strongly influenced by the composition of the coating materials as well as the TIG processing current. The microhardness increases with decreasing Fe contents in the coating materials with constant processing current (90 A) as well as it also increases with decreasing processing current with the fixed composition of coating materials (80TiB2–20Fe). The maximum average microhardness found was 3082 HV0.1 for the coating of 100TiB2–0Fe composition ratio and 90 A processing current which was about 18 times higher than that of the substrate average microhardness value (163 HV0.1). Average wear rate evaluated by considering weight loss of the TIG cladded samples using pin on disc tribometer by the sliding distance of 864 m and 20 N normal loads. The wear results also showed that the coating contains 100 wt% of TiB2 (0 wt% of Fe) exhibited lower rate of wear 6.74 × 10?8 g/Nm which is about 24 times lower as compared to AISI 1020 mild steel wear rate (166.31 × 10?8 g/Nm).  相似文献   
22.
In this article, pre-assembly hot-press pressure and thermal expansion effects in gas-diffusion layers (GDLs) are addressed to explore the practicalities of the constitutive model reported in the companion article. A facile technique is proposed to include deformation history dependent residual strain effects. The model is implemented in the numerical environment and compared with widely followed conventional models such as isotropic and orthotropic material models. With the normal and accelerated thermal expansion effects no significant variation in stresses or strains is reported with the compressible GDL model in contrast to the conventional incompressible form of the GDL model. The present work identifies the critical differences with advanced and extended variants of the model along with conventional GDL material models in terms of planar stress/strain distribution and the membrane response. Finally, the model is simulated for micro-cyclic stress loads of varying amplitudes that imitate the real working conditions of fuel cell. The inelastic energy dissipation in GDLs is predicted using the proposed model, which is utilized further to distinguish the safe (elastic) and unsafe (inelastic shakedown) operating limits. The inelastic collapse of GDLs is shown to be a active function of high amplitude micro-cyclic load with high initial clamping load.  相似文献   
23.
《Ceramics International》2022,48(1):754-759
Thermal control coatings (TCCs) are an essential part of the thermal control systems in the spacecraft. Solar absorptance and emittance are the key performance parameters of TCCs. To develop an ultra-low solar absorption and stable inorganic TCCs for surface radiator, different TCCs were prepared by co-sintering ZnO and SiO2 nanoparticles to form Zn2SiO4/SiO2 pigment in this work, and the optical properties and radiation stability were systematically studied. It is found that the coating based on composite pigment has high reflectivity in the ultraviolet band and excellent optical performance possessing the low solar absorption of 0.06. In addition, the Zn2SiO4/SiO2 coating demonstrates the highest proton and electron radiation stability because that SiO2 between Zn2SiO4 particles acts as the relaxation center of the defects caused by radiation.  相似文献   
24.
To operate a bag filter continuously, pulse-jet cleaning of dust particles from the filter medium is commonly required, and the pulse-jet pressure significantly affects the filter performance. In this study, the accumulation structure of residual dust particles inside and on the surface of a filter medium at different pulse-jet pressures was investigated by constructing a simple model, and the influence of the dust structure on the filter performance was clarified. Using a simple model, we determined the effective ratio of filtration area β, which represents the ratio of the filterable area to the total filtration area, the true resistance coefficient due to the primary dust layer ζp’ thinly deposited on the filter surface, and the true resistance coefficient inside the filter media itself ζf. The effective ratio of filtration area β decreased with operation time for all pulse-jet pressures; however, it maintained a high value when the pulse-jet pressure was high. The validity of β analyzed by the model was verified using two different methods, and the results showed good agreement, indicating that the model is effective in identifying real conditions. The true resistance coefficient due to the primary dust layer ζp’ decreased as the pulse-jet pressure increased; however, the true resistance coefficient inside the filter media itself ζf’ was the highest at 0.5 MPa. In addition, the dust collection efficiency was different at each pulse-jet pressure, which was considered to be caused by the difference in the dust particle accumulation structure.  相似文献   
25.
利用计算流体力学(Computational Fluid Dynamic, CFD)方法,针对连续螺旋折流板换热器建立物理模型和数学模型,在管侧介质为水和壳侧介质为原油条件下,研究不同原油流量及螺旋角对螺旋折流板换热器内部流场、换热性能及阻力性能的影响,并拟合了水油换热时螺旋折流板换热器的Nu、f与Re的关联式。结果表明:22°螺旋角的螺旋折流板换热器与其它较小螺旋角换热器对比,壳侧压降和换热系数逐渐减小,综合换热性能最佳。通过对壳侧原油为层流状态下的阻力系数和对流换热系数关系式进行拟合,更好地指导水-油连续螺旋折流板换热器的热力设计。  相似文献   
26.
《Ceramics International》2022,48(8):10613-10619
Alumina ceramics with different unit numbers and gradient modes were prepared by digital light processing (DLP) 3D printing technology. The side length of each functional gradient structure was 10 mm, the porosity ratio was controlled to 70%, and the number of units were (1 × 1 × 1 unit) and (2 × 2 × 2 unit) respectively. The different gradient modes were named FCC, GFCC-1, GFCC-2 and GFCC-3. SEM, XRD, and other characterization methods proved that these gradient structures of alumina ceramics had only α-Al2O3 phase and good surface morphology. The mechanical properties and energy absorption properties of alumina ceramics with different functional gradient structures were studied by compression test. The results show that the gradient structure with 1 × 1 × 1 unit has better mechanical properties and energy absorption properties when the number of units is different. When the number of units is the same, GFCC-2 and GFCC-3 gradient structures have better compressive performance and energy absorption potential than FCC structures. The GFCC-2 gradient structure with 1 × 1 × 1 unit has a maximum compressive strength of 19.62 MPa and a maximum energy absorption value of 2.72 × 105 J/m3. The good performance of such functional gradient structures can provide new ideas for the design of lightweight and compressive energy absorption structures in the future.  相似文献   
27.
This article presents nanohardness, coefficient of friction (COF), and wear of Yttria-stabilized zirconia coatings (YSZ) deposited on 316L steel substrates and co-deposited with Al and Ag. YSZ coatings were deposited via RF sputtering reactive phase technique. It is widely known that the RF sputtering technique produces stoichiometric coatings with high homogeneity and density. The average thickness of the coatings was 200 nm, and the X-ray diffraction study (XRD) showed the formation of alumina alpha (α-Al2O3) and metallic silver in the YSZ coatings deposited with Al and Ag, respectively. The mechanical properties were evaluated by means of nanoindentation, and the wear resistance was studied with pin-on-disk technique. The addition of Ag to the YSZ coatings led to decreased hardness, while the YSZ coatings deposited with Al presented an increased hardness. Finally, YSZ coatings deposited with aluminum and silver had the lowest friction coefficient, while Ag-YSZ coatings had a COF very similar to that obtained in YSZ coatings. The wear resistance test showed that YSZ coatings deposited with Al had lower volume loss compared to YSZ coatings deposited with Ag. The wear mechanism in the deposited coatings is analyzed.  相似文献   
28.
Materials with magneto-electric (ME) properties are of great importance because of their demand in electronic industries. Three dimensional nano-particles of the ME-composites having the general formula (1-x)CoCr0.3Fe1.7O4(CCFO)+(x)BaTiO3(BTO) (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) were obtained by comprising the piezoelectric-BTO and piezomagnetic-CCFO phases. The individual phases of CCFO and BTO were synthesized separately by ultrasonic irradiation assisted sonochemical and sol-gel routs. X-ray diffraction patterns (XRD) confirmed the well-crystalline nature of both the phases. BTO and CCFO phases were under tensile strain as confirmed by the variation in lattice constants with varying proportion of BTO and CCFO. An energy-dispersive X-ray spectroscopy spectrum confirmed the phase purity of the samples and stoichiometric concentration of elements. Magnetic properties were investigated by M ? H loop measurements and dielectric properties by using RF impedance analyzer. Dielectric constant increased with the increasing percentage of BTO. The maximum value of ME coefficient (24.7 mV/cm?Oe) is observed for the 60%CCFO+40%BTO sample. The obtained results were discussed in the light of grain size, strain and the basic properties of the individual phases. The prepared materials can be applicable in electronic devices where high magneto-electric coefficient is desirable.  相似文献   
29.
Undesired photoelectronic dormancy through active species decay is adverse to photoactivity enhancement. An insufficient extrinsic driving force leads to ultrafast deep charge trapping and photoactive species depopulation in carbon nitride (g-C3N4). Excitation of shallow trapping in g-C3N4 with long-lived excited states opens up the possibility of pursuing high-efficiency photocatalysis. Herein, a near-field-assisted model is constructed consisting of an In2O3-cube/g-C3N4 heterojunction associated with ultrafast photodynamic coupling. This In2O3-cube-induced near-field assistance system provides catalytic “hot areas”, efficiently enhances the lifetimes of excited states and shallow trapping in g-C3N4 and this favors an increased active species density. Optical simulations combined with time-resolved transient absorption spectroscopy shows there is a built-in charge transfer and the active species lifetimes are longer in the In2O3-cube/g-C3N4 hybrid. Besides these properties, the estimated overpotential and interfacial kinetics of the In2O3-cube/g-C3N4 hybrid co-promotes the liquid phase reaction and also helps in boosting the photocatalytic performance. The photocatalytic results exhibit a tremendous improvement (34-fold) for visible-light-driven hydrogen production. Near-field-assisted long-lived active species and the influences of trap states is a novel finding for enhancing (g-C3N4)-based photocatalytic performance.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号